最新的多视图多媒体应用程序在高分辨率(HR)视觉体验与存储或带宽约束之间挣扎。因此,本文提出了一个多视图图像超分辨率(MVISR)任务。它旨在增加从同一场景捕获的多视图图像的分辨率。一种解决方案是将图像或视频超分辨率(SR)方法应用于低分辨率(LR)输入视图结果。但是,这些方法无法处理视图之间的大角度转换,并利用所有多视图图像中的信息。为了解决这些问题,我们提出了MVSRNET,该MVSRNET使用几何信息从所有LR多视图中提取尖锐的细节,以支持LR输入视图的SR。具体而言,MVSRNET中提出的几何感知参考合成模块使用几何信息和所有多视图LR图像来合成像素对齐的HR参考图像。然后,提出的动态高频搜索网络完全利用了SR参考图像中的高频纹理细节。关于几个基准测试的广泛实验表明,我们的方法在最新方法上有了显着改善。
translated by 谷歌翻译
基于深度学习的立体图像超分辨率(StereOSR)的最新研究促进了Stereosr的发展。但是,现有的立体声模型主要集中于改善定量评估指标,并忽略了超级分辨立体图像的视觉质量。为了提高感知性能,本文提出了第一个面向感知的立体图像超分辨率方法,通过利用反馈,这是对立体声结果的感知质量的评估提供的。为了为StereOSR模型提供准确的指导,我们开发了第一个特殊的立体图像超分辨率质量评估(StereOSRQA)模型,并进一步构建了StereOSRQA数据库。广泛的实验表明,我们的Stereosr方法显着提高了感知质量,并提高了立体声图像的可靠性以进行差异估计。
translated by 谷歌翻译
深度神经网络极大地促进了单图超分辨率(SISR)的性能。传统方法仍然仅基于图像模态的输入来恢复单个高分辨率(HR)解决方案。但是,图像级信息不足以预测大型展望因素面临的足够细节和光真逼真的视觉质量(x8,x16)。在本文中,我们提出了一种新的视角,将SISR视为语义图像详细信息增强问题,以产生忠于地面真理的语义合理的HR图像。为了提高重建图像的语义精度和视觉质量,我们通过提出文本指导的超分辨率(TGSR)框架来探索SISR中的多模式融合学习,该框架可以从文本和图像模态中有效地利用信息。与现有方法不同,提出的TGSR可以生成通过粗到精细过程匹配文本描述的HR图像详细信息。广泛的实验和消融研究证明了TGSR的效果,该效果利用文本参考来恢复逼真的图像。
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than >28k data points, DePlot+LLM with just one-shot prompting achieves a 24.0% improvement over finetuned SOTA on human-written queries from the task of chart QA.
translated by 谷歌翻译
Compared to typical multi-sensor systems, monocular 3D object detection has attracted much attention due to its simple configuration. However, there is still a significant gap between LiDAR-based and monocular-based methods. In this paper, we find that the ill-posed nature of monocular imagery can lead to depth ambiguity. Specifically, objects with different depths can appear with the same bounding boxes and similar visual features in the 2D image. Unfortunately, the network cannot accurately distinguish different depths from such non-discriminative visual features, resulting in unstable depth training. To facilitate depth learning, we propose a simple yet effective plug-and-play module, One Bounding Box Multiple Objects (OBMO). Concretely, we add a set of suitable pseudo labels by shifting the 3D bounding box along the viewing frustum. To constrain the pseudo-3D labels to be reasonable, we carefully design two label scoring strategies to represent their quality. In contrast to the original hard depth labels, such soft pseudo labels with quality scores allow the network to learn a reasonable depth range, boosting training stability and thus improving final performance. Extensive experiments on KITTI and Waymo benchmarks show that our method significantly improves state-of-the-art monocular 3D detectors by a significant margin (The improvements under the moderate setting on KITTI validation set are $\mathbf{1.82\sim 10.91\%}$ mAP in BEV and $\mathbf{1.18\sim 9.36\%}$ mAP in 3D}. Codes have been released at https://github.com/mrsempress/OBMO.
translated by 谷歌翻译
Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models' capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
Do we really understand how machine classifies art styles? Historically, art is perceived and interpreted by human eyes and there are always controversial discussions over how people identify and understand art. Historians and general public tend to interpret the subject matter of art through the context of history and social factors. Style, however, is different from subject matter. Given the fact that Style does not correspond to the existence of certain objects in the painting and is mainly related to the form and can be correlated with features at different levels.(Ahmed Elgammal et al. 2018), which makes the identification and classification of the characteristics artwork's style and the "transition" - how it flows and evolves - remains as a challenge for both human and machine. In this work, a series of state-of-art neural networks and manifold learning algorithms are explored to unveil this intriguing topic: How does machine capture and interpret the flow of Art History?
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译